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Although the chemistry of transition metal-diene complexes 
is well established,1 few diene complexes of the highly electro­
positive metals of groups 1-3 have been synthesized.2-11 In the 
case of magnesium, only one diene complex has been characterized 
crystallographically;5 the diene complexes of the heavier group 
2 elements are probably oligomeric, and their poor solubility has 
hampered structural characterization. Recent developments in 
the coordination chemistry of these elements have been marked 
by the introduction of hydrocarbon and alkoxo ligands bearing 
sterically bulky substituents, which allow control of the solubility 
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Figure 1. ORTEP drawing of complex 1 with the numbering scheme. 
Selected bond lengths (A): Ca-Cl 2.574(7), Ca-C2 2.746(7), Ca-C3 
2.777(7), Ca-C4 2.588(7), C1-C2 1.448(9), C2-C3 1.375(8), C3-C4 
1.472(9). 

and kinetic stability of the complexes.12 While studying diene 
complexes of other elements,5'11'13-15 we found that 2,3-dimethyl-
l,4-diphenyl-l,3-butadiene (MPBD) forms complexes M(MPBD)-
(THF)4 with the heavier group 2 elements whose structures have 
been determined for the first time by X-ray diffraction. 

Treatment of an excess of metallic calcium with MPBD in 
THF under argon gives a deep red solution. After removal of 
unchanged metal, recrystallization from the saturated solution 
produces highly air-sensitive red crystals of Ca(MPBD)(THF)4 
(1) in 67% yield.16 In sharp contrast to the oligomeric nature of 
the calcium complex of l,4-diphenyl-l,3-butadiene,8'17 1 was 
monomeric. Presumably, the steric and electronic effects of 
introducing two methyl groups on the diene ligand prevent the 
formation of an oligomeric structure and make the complex soluble 
in THF. Similarly, reaction of metallic strontium with MPBD 
in THF followed by recrystallization from THF affords Sr-
(MPBD)(THF)4 (2) as deep red crystals in 61% yield.18 These 
complexes were characterized spectroscopically and by X-ray 
structural analysis. 

The X-ray structure of I19 (Figure 1) shows that the calcium 
atom is coordinated in a pseudooctahedral geometry by two carbon 
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Figure 2. Oi? TEP drawing of molecule I of complex 2 with the numbering 
scheme.22 Selected bond lengths (A), molecule I/molecule II: Sr-Cl 
2.73(2)/2.76(2), Sr-C2 2.91(l)/2.87(2), Sr-C3 2.95(2)/2.81(l), Sr-
C4 2.71(l)/2.76(l),Sr-C41 3.16(2)/3.09(2),C1-C2 1.48(2)/1.46(2), 
C2-C3 1.38(2)/1.38(2), C3-C4 1.47(2)/1.51(2). 

atoms of the diene and four oxygen atoms of the THF ligands. 
The bond distances Ca-Cl [2.574(7) A] and Ca-C4 [2.588(7) 
A] are less than the distances between Ca and the internal carbon 
atoms of the diene [2.746(7) and 2.777(7) A]. The bond lengths 
C1-C2 [1.448(9) A] and C3-C4 [1.472(9) A] are greater than 
C2-C3 [1.375(8) A]. This trend has already been observed in 
diene complexes of magnesium and lithium.3-5 In the calcium 
complex, the diene is coordinated in a highly dissymmetric 
manner.20 One phenyl group is displaced from the normal syn 
position with a torsion angle C3-C2-C1-C11 of 60(1)°, while the 
other phenyl group occupies the syn position with a torsion angle 
C2-C3-C4-C41 of 158.6(7)°. 

Figure 2 shows one of the two crystallographically independent 
but essentially identical structures of complex 2.21'22 The 
strontium atom also assumes a pseudooctahedral geometry, being 
surrounded by the diene and four THF ligands. In complex 2, 
both phenyl groups assume a syn orientation. The most interesting 
feature is that the two phenyl groups bend toward the metal 
center, the torsion angles C3-C2-C1-C11 and C2-C3-C4-C41 
being -159(1)° for molecule I [170(1)° for molecule H] and 
149(1)° for molecule I [-146(1)° for molecule II], respectively. 

(20) The dissymmetric coordination of the diene in 1 is detectable in solution. 
At 30 9C, the NMR peaks of the two oleflnic protons of the diene are observed 
as a broad singlet at S 2.9-3.4 ppm; below 0 0C, this signal separates into two 
singlets at 6 2.81 and 3.28 ppm. The intensity of the signal assignable to the 
syn protons decreases at lower temperature. Finally, at -60 0C, only one 
singlet due to the anti protons at S 3.28 ppm is observed. The observed 
fluxionality is explicable on the basis of an equilibrium between a coordinated 
(£,£)-diene (the most stable form in solution at low temperature) and a 
coordinated (£,Z)-diene, which corresponds to the crystal structure of 1. 

(21) Crystal data of 2: FW = 610.39, monoclinic space group P2\/c, a » 
9.127(3), b - 27.68(1), and c - 26.261(5) A, 0 = 97.91(3)°, V- 6570(3) 
A3, Z » 8, dam =1.234, Ii (Cu Ko) = 25.27 cm"1, no. of parameters - 730, 
no. of reflection data with I> 3a(l) = 3711, goodness of fit» 2.61,R = 0.071, 
Rw = 0.063. 
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The distance Sr-C41 [3.16(2) A for molecule I, 3.09(2) A for 
molecule II] is greater than Sr-C2 [2.91 (1) A for molecule I and 
2.87(2) A for molecule II] and Sr-C3 [2.95(2) A for molecule 
1,2.81 (1) A for molecule II] and can be regarded as representing 
a weak <r-type interaction in complex 2. This is consistent with 
the tendency for aromatic hydrocarbons to interact with the larger 
and polarizable heavier group 1 and 2 metals in a multihapto 
fashion.23 

We also prepared a magnesium-diene complex, Mg(MPBD)-
(dme)2 (3),24 in order to elucidate the structural features of 1 and 
2 in solution. The structures of calcium- and strontium-diene 
complexes are between irMiene and metallacyclc-3-pentene, while 
the structure of 3 is metallacyclo-3-pentene. The resonances due 
to Hi,4 in 1 (8 2.9-3.4 ppm) and 2 (5 3.6 ppm) are observed at 
lower field than those of 3 (8 2.55 ppm), and also 13C chemical 
shifts of Ci,4 in 1 (5 72.9 ppm) and 2 (8 77.9 ppm) appear at lower 
field than that in 1 (6 48.0 ppm). For complexes 1 and 2, the 
C-H coupling constants [142 Hz (1); 147 Hz (2)] correspond to 
Sp2-6 and sp2-5 hybridization, respectively, whereas the coupling 
constant of 127 Hz for 3 corresponds to approximately sp2-' 
tetrahedral hybridization. These data are in accord with the 
electronic spectra of the diene complexes of magnesium (3), 
calcium (1), and strontium (2), which exhibit Xn^, values at 248, 
453, and 472 nm, respectively, and indicate increasing carbanionic 
character for the diene in bonding with heavier group 2 metals. 
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